
Research Institute for Advanced Computer Science
NASA Ames Research Center

Efficient Load Balancing and Data
Remapping for Adaptive Grid Calculations

Leonid Oliker

Rupak Biswas

RIACS Technical Report 97.03 April 1997

To appear in the Proceedings of 9th ACM Symposium on Parallel Algorithms and Architectures ,

Newport, Rhode Island, June 22-25, 1997.

Efficient Load Balancing and Data
Remapping for Adaptive Grid Calculations

Leonid Oliker

Rupak Biswas

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 212, Columbia, MD 21044, (410) 730-2656

Work reported herein was supported by NASA via Contract NAS 2-96027 between NASA and the Universities

Space Research Association (USRA). Work was performed at the Research Institute for Advanced Computer

Science (RIACS), NASA Ames Research Center, Moffett Field, CA 94035-1000.

Efficient Load Balancing and Data Remapping for Adaptive Grid Calculations

Leonid Oliker

RIACS, NASA Ames Research Center, Moffett Field, CA 94035
oliker@riacs, edu

Rupak Biswas

MRJ Technology Solutions, NASA Ames Research Center, Moffett Field, CA 94035

rb ±swasOnas. nasa. gov

ABSTRACT

Mesh adaption is a powerful tool for efficient unstructured-

grid computations but causes load imbalance among proces-

sors on a parallel machine. We present a novel method to

dynamically balance the processor workloads with a global

view. This paper presents, for the first time, the imple-
mentation and integration of all major components within

our dynamic load balancing strategy for adaptive grid cal-
culations. Mesh adaption, repartitioning, processor assign-

ment, and remapping are critical components of the frame-

work that must be accomplished rapidly and efficiently so

as not to cause a significant overhead to the numerical sim-

ulation. Previous results indicated that mesh repartitioning

and data remapping are potential bottlenecks for perform-

ing large-scale scientific calculations. We resolve these issues
and demonstrate that our framework remains viable on a

large number of processors.

1 INTRODUCTION

Dynamic mesh adaption on unstructured grids is a power-

ful tool for computing unsteady three-dimensional problems

that require grid modifications to efficiently resolve solu-

tion features. By locally refining and coarsening the mesh

to capture flowfield phenomena of interest, such procedures

make standard computational methods more cost effective.

Highly refined meshes are required to accurately capture

shock waves, contact discontinuities, vortices, and shear lay-

ers. Local mesh adaption provides the opportunity to obtain

solutions that are comparable to those obtained on globally-

refined grids but at a much lower cost.

Unfortunately, the adaptive solution of unsteady prob-

lems causes load imbalance among processors on a paral-

lel machine. This is because the computational intensity is

both space and time dependent. An efficient parallel imple-

mentation of such methods is extremely difficult to achieve,

primarily because of the dynamically-changing nonuniform

grid. Various methods on dynamic load balancing have been

reported to date [5-9,11-14,16-18,24-26]; however, most of

them either lack a global view of loads across processors or

Proceedings of the 9th ACM Symposium on Parallel Al-

gorithms and Architectures, Newport, Rhode Island, June

22-25, 1997.

do not apply their techniques to realistic large-scale appli-
cations.

Figure 1 depicts our framework for parallel adaptive flow

computation. It consists of a flow solver and a mesh adap-
tor, with a partitioner and a remapper that load balances

and redistributes the computational mesh when necessary.

Our goal is to build a portable system for efficiently per-

forming adaptive large-scale flow calculations in a parallel
message-passing environment. The mesh is first partitioned

and mapped among the available processors. The flow solver
then runs for several iterations, updating solution variables.

Once an acceptable solution is obtained, the mesh adaption

procedure is invoked. It first targets edges for coarsening

and refinement based on an error indicator computed from

the flow solution. The old mesh is then coarsened, resulting

in a smaller grid. Since edges have already been marked for

refinement, it is possible to exactly predict the new mesh

before actually performing the refinement step. Program

control is thus passed to the load balancer at this time. A

quick evaluation step determines if the new mesh will be so

unbalanced as to warrant a repartitioning. If the current

partitions will remain adequately load balanced, control m

passed back to the subdivision phase of the mesh adaptor.

Otherwise, a repartitioning procedure is used to divide the

new mesh into subgrids. The new partitions are then reas-
signed to the processors in a way that minimizes the cost

of data movement. If the remapping cost is less than the
computational gain that would be achieved with balanced

partitions, all necessary data is appropriately redistributed.

Otherwise, the new partitioning is discarded. The computa-
tional mesh is then actually refined and the flow calculation
is restarted.

Notice from the framework in Fig. 1 that splitting the

mesh refinement step into two distinct phases of edge mark-

ing and mesh subdivision allows the subdivision phase to

operate in a more load balanced fashion. In addition, since

data remapping is performed before the mesh grows in size

due to refinement, a smaller volume of data is moved. This

can lead to a potentially significant savings in the redistribu-

tion cost. The load balancer also balances the computational

load for the flow solver while reducing the runtime commu-

nication. This is important because flow solvers are usually

several times more expensive than mesh adaptors. In any

case, it is obvious that mesh adaption, repartitioning, pro-

cessor assignment, and remapping are critical components

of the framework and must be accomplished rapidly and ef-

ficiently so as not to cause a significant overhead to the flow

computation.

INITIALIZATION

I Initial Mesh]

I
] Partitionin_]

[Mat ping]

r

FLOW SOLVER

i

MESH ADAPTOR

-_ Edge marking [
l

I Coarsenin_]

[Refinement l*
I

i

I
i

LOAD BALANCER

!

I Repartitioning I
l

I Reas_nment [

Figure 1: Overview of our framework for parallel adaptive flow computation.

2 EULER SOLVER FOR ROTOR FLOWS

The unstructured-grid CFD solver [22] used for the numeri-

cal calculations in this paper is a finite-volume upwind code
that solves for the unknowns at the vertices of the mesh

and satisfies the integral conservation laws on nonoverlap-

ping polyhedral control volumes surrounding these vertices.

Improved accuracy is achieved by using a piecewise linear
reconstruction of the solution in each control volume. For

helicopter problems, the Euler equations are written in an

inertial reference frame so that the rotor blade and grid move

through stationary air at the specified rotational and trans-

lational speeds. Fluxes across each control volume are com-

puted using the relative velocities between the moving grid

and the stationary far field. For a rotor in hover, the grid

encompasses an appropriate fraction of the rotor azimuth.

Periodicity is enforced by forming control volumes that in-

clude information from opposite sides of the grid domain.

The solution is advanced in time using conventional explicit

procedures.

The code uses an edge-based data structure that makes it

particularly compatible with our mesh adaption procedure.

Furthermore, since the number of edges in a mesh is signif-

icantly smaller than the number of faces, cell-vertex edge
schemes are inherently more efficient than cell-centered ele-

ment methods. Finally, an edge-based data structure does

not limit the user to a particular type of volume element.

Even though tetrahedral elements are used in this paper, any

arbitrary combination of polyhedra can be used [4]. This is

also true for our load balancing procedure.

3 PARALLEL MESH ADAPTION

The serial mesh adaption scheme, called 3D_TAG, is de-

scribed in [3]. The 5000-line C code has its data structures

based on edges of a tetrahedral mesh. This means that

the elements are defined by their six edges rather than by

their four vertices. This feature makes the mesh adaption

procedure capable of performing anisotropic refinement and

coarsening that results in a more efficient distribution of grid

points.

At each mesh adaption step, tetrahedral elements are

targeted for coarsening, refinement, or no change by com-

puting an error indicator for each edge. Edges whose er-

ror values exceed a specified upper threshold are targeted

for subdivision. Similarly, edges whose error values lie be-

low another lower threshold are targeted for removal. 0nly

three subdivision types are allowed for each element. The

1-to-8 isotropic subdivision is implemented by adding a new

vertex at the mid-point of each of the six edges. The 1-to-4
and 1-to-2 subdivisions result either because a tetrahedron

is targeted anisotropically or because they are required to

form a valid connectivity for the new mesh. When an edge

is bisected, the solution vector is linearly interpolated at the

mid-point from the two points that constitute the original

edge.

Mesh refinement is performed by first setting a bit flag to

one for each edge that is targeted for subdivision. The edge

markings for each element are then combined to form a 6-bit

pattern. Elements are continuously upgraded to valid pat-

terns corresponding to the three allowed subdivision types
until none of the patterns show any change. Once this edge

marking is completed, each element is independently subdi-

vided based on its binary pattern. Special data structures

are used to ensure that this process is computationally effi-
cient.

Mesh coarsening also uses the edge-marking patterns. If

a child element has any edge marked for coarsening, this

element and its siblings are removed and their parent is re-

instated. Parent edges and elements are retained at each

refinement step so they do not have to be reconstructed. Re-

instated parent elements have their edge-marking patterns

adjusted to reflect that some edges have been coarsened.

The parents are then subdivided based on their new pat-

terns by invoking the mesh refinement procedure. As a re-

suit, the coarsening and refinement procedures share much

of the same logic.

There are some constraints for mesh coarsening. For

example, edges cannot be coarsened beyond the initial mesh.

Edges must also be coarsened in an order that is reversed

from the one by which they were refined. Moreover, an

edge can coarsen if and only if its sibling is also targeted for

coarsening. More details about these coarsening constraints

are given in [4].

Pertinent information is maintained for the vertices, el-

ements, edges, and external boundary faces of the mesh.

In addition, each vertex has a list of all the edges that

are incident upon it. Similarly, each edge has a list of all

the elements that share it. These lists eliminate extensive

searches and are crucial to the efficiency of the overall adap-
tion scheme.

Details of the distributed-memory implementation are

given in [19]. The parallel version consists of an additional

3000 lines of C-b+ and MPI code as a wrapper around the

original serial mesh adaption program. An object-oriented

approach allowed this to be performed in a clean and effi-

cient manner. The parallel adaption code consists of three
phases: initialization, execution, and finalization. The ini-

tialization and finalization steps are executed only once for

each problem outside the main solution_-_adaption*-doad-

balancing cycle shown in Fig. 1. The execution step runs a

local copy of the mesh adaption algorithm on each proces-

sor. Good parallel performance is therefore critical during

this phase since it is executed several times during a flow

computation.

The initialization phase takes as input the global ini-

tial grid and the corresponding partition information that

places each tetrahedral element in exactly one partition. It
then distributes the global data across the processors, defin-

ing a local number for each mesh object, and creating the

mapping for objects that are shared by multiple processors.

Shared vertices and edges are identified by searching for el-

ements that lie on partition boundaries. A bit flag is set to
distinguish between shared and internal objects. A list of

shared processors (SPL) is also generated for each shared
object. The additional storage that is required for the par-

allel code depends on the number of processors used and: the

fraction of shared objects. For the cases in this paper, this

was less than 10% of the memory requirements of the serial
version.

The execution phase runs a copy of 3D_TAG on each

processor that adapts its local region, while maintaining
a globally-consistent grid along partition boundaries. The

first step is to target edges for refinement or coarsening based

on an error indicator computed from the flow solution. This

process results in a symmetrical marking of all shared edges

across partitions because shared edges have' the same flow

and geometry information regardless of their processor num-

ber. However, elements have to be continuously upgraded to

one of the three allowed subdivision patterns. This causes

some propagation of edges targeted for refinement that could

mark local copies of shared edges inconsistently. This is be-

cause the local geometry and marking patterns affect the

nature of the propagation. Communication is therefore re-

quired after each iteration of the propagation process. Every

processor sends a list of all the newly-marked local copies

of shared edges to all the other processors in their SPLs.

The process may continue for several iterations, and edge

markings could propagate back and forth across partitions.

Once all edge markings are complete, each processor exe-

cutes the mesh adaption code without the need for further

communication, since all edges are consistently marked. The

only task remaining is to update the shared edge and vertex

information as the mesh is adapted. This is handled as a

post-processing phase.

New edges and vertices that are created on partition

boundaries during refinement are assigned shared processor

information. If a shared edge is bisected, its two children

and the center vertex inherit its SPL. However, if a new

edge is created that lies across an element face, communica-

tion is sometimes required to determine whether it is shared

or internal. If it is shared, the SPL must be formed.

The coarsening phase purges the data structures of all

edges that are removed, as well as their associated vertices,

elements, and boundary faces. No new shared information

is generated since no mesh objects are created during this

step. However, objects are renumbered due to compaction

and all internal and shared data are updated accordingly.

The refinement routine is then invoked to generate a valid

mesh from the vertices left after the coarsening.

It is sometimes necessary to create a single global mesh

after one or more adaption steps. Some post processing

tasks, such as visualization, need to processes the whole

grid simultaneously. Storing a snapshot of a grid for future

restarts could also require a global view. The finalization

phase accomplishes this task by connecting individual sub-

grids into one global mesh. Each local object is first assigned

a unique global number. All processors then update their lo-

cal data structures accordingly. Finally, a gather operation

is performed by a host processor to concatenate the local

data structures into a global mesh. The host can then in-

terface the mesh directly to the appropriate post-processing

module without having to perform any serial computation.

4 DYNAMIC LOAD BALANCING

We present a novel method to dynamically balance the pro-

cessor workloads with a global view. Results reported in [21]
focused on fundamental load balancing issues while simulat-

ing various modules of our framework. This paper presents,
for the first time, the implementation and integration of all

major components within our dynamic load balancing strat-

egy. This includes interfacing the parallel mesh adaption

procedure based on actual flow solutions to a data remap-

ping module. Previous results indicated that mesh repar-

titioning and data remapping are potential bottlenecks for

performing large-scale flow analysis. We resolve these issues
and demonstrate that our framework remains viable on a

large number of processors.

Our load balancing procedure has five novel features:

(i) a dual graph representation of the initial computational

mesh keeps the complexity and connectivity constant dur-

ing the course of an adaptive computation; (ii) a parallel

mesh repartitioning algorithm avoids a potential serial bot-

tleneck; (iii) a heuristic remapping algorithm quickly assigns

partitions to processors so that the redistribution cost is

minimized; (iv) an efficient data movement scheme allows

remapping and mesh subdivision at a significantly lower cost

than previously reported; and (v) accurate metrics estimate

and compare the computational gain and the redistribution

cost of having a balanced workload after each mesh adaption

step.

4.1 DUAL GRAPH OF INITIAL MESH

The dual graph representation of the initial computational

mesh is one of the key features of this work. The tetrahe-

dral elements of this mesh are the vertices of the dual graph.

An edge exists between two dual graph vertices if the cor-

responding elements share a face. A graph partitioning of

the dual thus yields an assignment of tetrahedra to proces-

sors. The most significant advantage of using the dual of the

initial computational mesh to perform the partitioning and

mapping is that the complexity remains unchanged during

the course of an adaptive computation.

Each dual graph vertex has two weights associated with

it. The computational weight, Wcomp, indicates the work-

load for the corresponding element. The remapping weight,

Wremap, indicates the cost of moving the element from one

processorto another. The weight Wcomp is set to the num-
ber of leaf elements in the refinement tree because only those

elements participate in the flow computation. The weight

Wremap, however, is set to the total number of elements in
the refinement tree because all descendants of the root ele-

ment must move with it from one partition to another if so

required. New grids obtained by adaption are translated to

the two weights for every element in the initial mesh. As

a result, the repartitioning time depends only on the initial

problem size and the number of partitions, but not on the

size of the adapted mesh.
One minor disadvantage of using the dual grid is when

the initial computational mesh is either too large or too
small. For extremely large initial meshes, the partitioning

time will be excessive. This problem can be circumvented by

agglomerating groups of elements into larger superelements.

For very small meshes, the quality of the partitions will be
bad. One can then allow the initial mesh to be adapted

one or more times before using the dual graph for all future

adaptions.

4.2 PARALLEL MESH REPARTITIONING

If the preliminary evaluation step determines that the dual

graph with a new set of computational weights Wcomp is
unbalanced, the mesh needs to be repartitioned. A good

partitioner should minimize the total execution time by bal-

ancing the computational loads and reducing the interpro-
cessor communication time. The repartitioning phase must

be performed very rapidly for Our load balancing framework

to be viable. Serial partitioners are inherently inefficient

since they do not scale in either time or space with the

number of processors. Additionally, a bottleneck is created

when all processors are required to send their portion of the

grid to the host responsible for performing the partitioning.
The solution must then be scattered back to all the proces-

sors before the load balancing can continue. A high quality

parallel partitioner is therefore necessary to alleviate these

problems.
For the test cases in this paper, an alpha version of par-

allel MeTiS [15] was used for repartitioning. MeTiS is a

multilevel algorithm which has been shown to quickly pro-

duce high quality partitions. It reduces the size of the graph

by collapsing vertices and edges using a heavy edge matching

scheme, applies a greedy graph growing algorithm for par-

titioning the coarsest graph, and then uncoarsens it back

using a combination of boundary greedy and Kernighan-
Lin refinement to construct a partitioning for the original

graph. A key feature of parallel MeTiS is the utilization of

graph coloring to parallelize both the coarsening and the un-

coarsening phases. An additional benefit of the algorithm

is the potential reduction in remapping cost since parallel

MeTiS, unlike the serial version, uses the previous partition

as the initial guess for the repartitioning. Results indicate

that this partitioning algorithm can be effectively used in-
side our load balancing scheme. However, any partitioning

algorithm could be used, as long as it is fast, and delivers

reasonably balanced partitions based on the new weights.

4.3 SIMILARITY MATRIX CONSTRUCTION

Once new partitions are obtained, they must be mapped to

processors such that the redistribution cost is minimized. In

general, the number of new partitions is an integer multi-

ple F of the number of processors. Each processor is then

assigned F unique partitions. The rationale behind allow-

ing multiple partitions per processor is that performing data

mapping at a finer granularity reduces the volume of data

movement at the expense of partitioning and processor re-

assignment times. However, the simpler scheme of setting
F to unity suffices for most practical applications and was
used for the tests in this paper. The effects of varying F can

be found in [2].
The first step toward processor reassignment is to com-

pute a similarity measure S that indicates how the remap-

ping weights Wrcmap of the new partitions are distributed
over the processors. It is represented as a matrix where

entry Si,j is the sum of the Wrem_p of all tt_e dual graph ver-

tices in new partition j that already reside on processor i.

Since the partitioning algorithm is run in parallel, each pro-
cessor can simultaneously compute one row of the matrix,

based on the mapping between its current subdomain and

the new partitioning. This information is then gathered by a

single host processor that builds the complete similarity ma-

trix, computes the new partition-to-processor mapping, and
scatters the solution back to the processors. Note that these

gather and scatter operations require a minuscule amount

of time since only one row of the matrix (P×F integers)
needs to be communicated to the host processor. A similar-

ity matrix for P = 4 and .F = 1 is shown in Fig. 2. Only
the non-zero entries are shown.

4.4 PROCESSOR REASSIGNMENT

The goal of the processor reassignment phase is to find a

mapping between partitions and processors such that the
data redistribution cost is minimized. Various cost func-

tions are usually needed to solve this problem for different

architectures. We present two general metrics: TotalV and

MaxV, which model the remapping cost on most multipro-

cessor systems. TotalV minimizes the total volume of data

moved among all processors, while MaxV minimizes the max-
imum flow of data to or from any single processor.

TotalY assumes that by reducing network contention and

the total number of elements moved, the remapping time will

be reduced. In general, each processor cannot be assigned F

unique partitions corresponding to their F largest weights.
This is the case for the similarity matrix shown in Fig. 2(a)

where the F largest weights for each processor are shaded.

To minimize Tota17, each processor i must be assigned F

unique partitions j,_f, f = 1, 2 , F, so that the objective

function _- _--_iF 1 F= _l=a Si,j___ is maximized subject to

the constraint j,_r # jh_s, for all i # k and r, s = 1, 2.... , F.

Both an optimal and a heuristic greedy algorithm have

been implemented for solving this problem. When F -= 1,

the problem trivially reduces to a maximally weighted bi-

partite graph (MWBG), with P processors and P partitions

in each set. An edge of weight Si,j exists between vertex
i of the first set and vertex j of the second set. If F > 1,

the processor reassignment problem can be reduced to the

MWBG problem by duplicating each processor and all of its

incident edges F times. Each set of the bipartite graph then
has P×F vertices. After the optimal solution is obtained,

the solutions for all F copies of a processor are combined

to form a one-to-F mapping between the processors and the

partitions.
The optimal solution and the corresponding processor as-

signment using the Tota17 metric for the similarity matrix

in Fig. 2(a) is shown in Fig. 2(b). The optimal algorithm

requires O(VE) steps, where V and E are the number of

vertices and edges in the weighted bipartite graph, respec-

tively. We have developed a heuristic greedy algorithm that

gives a suboptimal solution in O(E) steps. The pseudocode

New Partitions

llallMlllmlill

 =,00W

_ _3o _o

(a)

New Partitions New Partitions New Partitions

O

New Processors New Processors

Ctota 1 = 450 Ntota 1 = 6 Ctota 1 = 475 Ntota 1 = 6

C =260 N =3 C =255 N --3
max max max max

(b) (c)

U

New Processors

Ctota l = 545 Ntota 1 = 7

C = 245 N -- 3
max max

(d)

Figure 2: A similarity matrix (a) before, and (b-d) after processor reassignment using (b) optimal MWBG algorithm and

TotalV metric, (c) heuristic MWBG algorithm and TotalV metric, and (d) optimal BMCM algorithm and MaxV metric.

for our heuristic algorithm is as follows:

for (j=O; j<npart; j++) part_map[j] = unassigned;

for (i=O; i<nproc; i++) proc_unmap[i] = apart / nproc;

generate list L of entries in S in descending order

using radix sort;

count = O;

while (count <npart) {

find next entry S[i] [j] in L such that

proc_unmap[i] > 0 and part_map[j] = unassigned;

proc_unmap [i] -- ;

part_map[j] = assigned;

count++ ;

map partition j to processor i;

)

Initially, all partitions are flagged as unassigned and each
processor has a counter set to F that indicates the remain-

ing number of partitions it needs. The non-zero entries of

the similarity matrix S are then sorted in descending or-

der. Starting from the largest entry, partitions are assigned

to processors that have less than F partitions until done.

If necessary, the zero entries in S are also used. Applying

this heuristic algorithm to the similarity matrix in Fig. 2(a)

generates the new processor assignment shown in: Fig. 2(c).
The value of the objective function 9v is 280 for the heuristic

solution but is 305 for the optimal solution.

Theorem 1: The value of the objective function J: us-

ing the heuristic algorithm is always greater than half the

optimal solution.

Proof: We prove by the method of induction. Let S _.t_3

denote the entry in the i-th row and j-th column of a k×k

similarity matrix. Let 0pt k and lteu k denote the optimal and

heuristic solutions, respectively, for the similarity matrix S k.

When k = 1, 0pt 1 = lieu 1 since there is only one entry in

S 1 and must be chosen by both algorithms. Thus, 2 Heu I >_

0pt I .

Assume now that the theorem is true for some n > 1;

that is, 2Heu" _> 0pt n. We need to show that 2Heu n+l _>

0pt n+l '

Without loss of generality, create S n+l from S" by add-
qn+l n+l

ing a new row and column such that _n+l,,+l > max(Si,n+l,

S_+a _ for 1 < i < n. Therefore, by definition of the heuris-
n+a,i]

.q_n+l Since 2 Heu" >tic algorithm, lieu "+_ = Heu n + _n+1,,+1"

Opt", we get 2 Heu _+1 _> Opt '_ + 2 S_++_ n+l" There are now
two cases that can occur for the optim_ solution.

_,n+l
Case 1. -n+1,,+1 is contained in the optimal solution.

n n+l
This means Opt n+] = Opt + Sn+l,n+ 1 . Thus, 2 Heu n+l >_

¢'_+_ which implies 2Heu "+1 > 0pt n+l []OP tn+_ + _n+l,n+l ' -- "

q,n+]
Case 2. _.+1,=+1 is not contained in the optimal solu-

tion.
q,n+l qn+l

Without loss of generality, assume that _.,n+a and -.+1,.

are contMned in the optimal solution This means Opt "+_ =

q"+_ we getq,n+l .qn+l By definition of _n+l,n+lOP tn-1 + _n,n+l + _n+l,n"

_ S _+a0p'l; n+l < 0p't n-1 "4-2 n+l,n+l" Since 0pt n _> 0pt n-l, we

_ ¢n+1 . Therefore, 2 Hou n+l >have IJpt n+] < I]pt n + 2 _nTl,n+l

0pg n+l . []

Corollary: A processor assignment obtained using the

heuristic algorithm can never result in a data movement cost

that is more than twice that of the optimal assignment.
Proof: We assume that the data movement cost is pro-

portional to the number of elements that are moved and is

given by E E Si,j -- .T'. We need to show that E E S_,j --

lieu" < 2 (E _ S_,j - 0ptn); that is, E _ S_,j - 2 Opt n +
Heu n _ 0.

Let Int k be the sum of the similarity matrix entries that
S n _are contained in both 0pC k and Heu k. Therefore, _ _ i,j >

Opt" + Heu n -- Int". This implies _ _ S 9. - 2 Opt" + Heu n >%3

2 Heu n -Optn - Intn. By Theorem 1, 2 (neu n -- Int n) >__

(Opt n- Int=), since (Heu =- Int _) and (Opt n- Int _) are

the heuristic and optimal solutions for a similarity matrix
S k C S n. n

MaxV considers data redistribution in terms of solving

a load imbalance problem, where it is more important to
minimize the workload of the most heavily-weighted pro-

cessor than to minimize the sum of all the loads. During

the process of remapping, each processor must pack and un-

pack send and receive buffers, incur remote-memory latency

time, and perform the computational overhead of rebuild-

ing internal and shared data structures. By minimizing the

maximum of _ × #ElementsSent and fl × #ElementsReceived

(where a and fl are machine-specific parameters), HaxV at-

tempts to reduce the total remapping time by minimiz-

ing the execution time of the most heavily-loaded proces-

sor. This problem can be solved optimally as the bottle-

neck maximum cardinality matching (BMCM) problem [10]

in O((Ylog V)_/2E) steps, and has been implemented for

F = 1. The new processor assignment for the similarity

matrix in Fig. 2(a) using this approach with a = 8 = 1 is

shown in Fig. 2(d).
Note that TotalV does not consider the execution times

of bottleneck processors while l_axV ignores bandwidth con-

tention. A quantitative comparison of the two metrics for

our test cases is presented in Section 5. In general, the objec-

tive function may need to use a combination of both metrics

to effectively incorporate all related costs. This issue will be
addressed in future work.

4.5 COST CALCULATION

The computational gain due to repartitioning is proportional

to the decrease in the load imbalance achieved by running

the adapted mesh on the new partitions rather than on the

old partitions. It can be expressed as T, terN_d_pt(}v°ldx --

Wmae_), where _ter is the time required to run one solver

iteration on one element of the original mesh, gadapt is the
number of solver iterations between mesh adaptions, and

w°ld.,max and W_xnew are the sum of the Wcomp on the most

heavily-loaded processor for the old and new partitionings,

respectively.
The redistribution cost is calculated from the similar-

ity matrix using two machine-dependent parameters: the

remote-memory latency time _q_t and the message startup

time T_et,p. _qat is the time required for memory-to-memory

copying of a word, and applies to every initial mesh element

that is moved. T_etup is the time required to prepare mes-

sage headers, load the message buffer, and so on, and applies

to each set of elements that is moved from one processor to
another. For the TotalV metric, the redistribution cost can

be expressed as MCtot_lTl_t + NtotalT_¢tup, where M is the
storage requirements per element for the solver and mesh

adaptor, and Ctot_l and Ntot_l are the total number of ele-

ments and sets of elements to be moved, respectively. For

the MaxV metric, the redistribution cost can be written as

MCm_,×TI_t -4-Nm_,xT_t,p, where Cmax and N_. are the to-
tal number elements and sets of elements to be moved for the

bottleneck processor only. The values of Ctotal, Cm_x, Ntot_,l,

and Nmax for each of the three processor reassignments are

shown in Figs. 2(b)-2(d). The new partitioning and proces-

sor reassignment are accepted if the computational gain is

larger than the redistribution cost.

4.6 EFFICIENT DATA REMAPPING

The remapping phase is responsible for physically moving

data when it is reassigned to a different processor. When an

element is moved from one processor to another, a communi-

cation cost as well as a computational overhead are incurred.

The communication cost includes the time required to pack

and unpack the send and receive buffers, and the message

startup and remote-memory latency times. The computa-

tional overhead is the time necessary to rebuild the internal
and shared data structures.

Previous results [1] have indicated that remapping is the

most expensive phase of our load balancing strategy. This

time can be significantly reduced by considering two distinct

phases of mesh refinement: marking and subdivision. Dur-

ing the marking phase, edges are chosen for bisection either

based on an error indicator or due to the propagation needed

for valid mesh connectivity [3]. This is essentially a book-

keeping step during which the grid remains unchanged. The

subdivision phase is the process of actually bisecting edges

and creating new vertices and elements based on the gen-

erated edge-marking patterns. During this phase, the data

volume corresponding to the grid grows since new mesh ob-
jects are created.

A key observation is that data remapping for a refine-

ment step should be performed after the marking phase but

before the actual subdivision. Because the refinement pat-

terns are determined during the marking phase, the weights

of the dual graph can be adjusted as though subdivision

has already taken place. Based on the updated dual graph,

the load balancer proceeds in generating a new partitioning,
computing the new processor assignments, and performing

the remapping on the original unrefined grid. Since a smaller

volume of data is moved using this strategy, a potentially

significant cost savings is achieved The newly redistributed
mesh is then subdivided based on the marking patterns.

An additional performance benefit is obtained as a side

effect of this strategy. Since the original mesh is redis-

tributed so that mesh refinement creates approximately the
same number of elements in each partition, the subdivision

phase performs in a more load balanced fashion. This re-

duces the total mesh refinement time. The savings should

thus be incorporated as an additional term in the computa-

tional gain expression described in the previous subsection.

The new partitioning and mapping are accepted if the com-

putational gain is larger than the redistribution cost:

T N [W, °ld new h / new__iter adapt _ mz,x-W_n;_xJ"_-rrefine -W_=Zx 1 >
]

MCT_, + NT_¢t,p,

where T_efin_ is the time required to perform the subdivision

phase based on the edge-marking patterns. The symbols C

and N are Ctotal and Ntot_t for the TotalV metric, and Cmax

and Nm_ for the l_axV metric.

5 RESULTS

The parallel mesh adaption and global load balancing proce-

dures have been implemented on an IBM SP2. Both codes

are written in C and C++, with the parallel activities in

MPI for portabihty. No SP2-specific optimizations were

used to obtain the results reported here.

The computational mesh is the one used to simulate

an acoustics experiment of Purcell [20] where a 1/7th-scale

model of a UH-1H helicopter rotor blade was tested over

a range of subsonic and transonic hover-tip Mach numbers.
Numerical results and a detailed report of the simulation are

given in [23]. A cut-out view of the initial tetrahedral mesh

is shown in Fig. 3.
Results are presented for one refinement step where edges

are targeted for subdivision based on an error indicator [23]
calculated directly from the flow solution. Three different

cases are studied with varying fractions of the domain being

targeted for refinement. The three strategies, called Real_l,
Real_2, and Real_3, subdivided 5_, 33_0, and 60_0 of the

78,343 edges of the initial computational mesh. Table 1 lists

the grid sizes for this single level of refinement for each of the

three cases. Coarsening results are not reported here as they
are similar to those presented earlier [1,2]. We focus only

on the mesh refinement phase as it is being done in a load
balanced fashion for the first time while also reducing data

movement. Several other edge-marking strategies based on

geometry have been investigated elsewhere [1].
Figure 4 illustrates the parallel speedup for each of the

three edge-marking strategies. Two sets of results are pre-

sented: one when data remapping is performed after mesh
refinement, and the other when remapping is performed be-

Figure3:Viewoftheinitialtetrahedralmesh.

Initi_

Real_l

Real_2

Real_3

Vertices Elements Edges Bdy Faces

131967 60,968 78,343 6,818

17,880 82,489 104,209 7,682
39,332 201,780 247,115 12,008

61,161 321,841 391,233 16,464

Table 1: Grid sizes for the three refinement strategies.

fore refinement. The Real_3 case Shows the best speedup

performance because it is the most computation intensive.

Remapping the data before refinement has the largest rela-

tive effect for Real_l, increasing the speedup from 9.3X to

23.9X on 64 processors. This is because the refinement re-

gion is the smallest for this strategy and load balancing the

refined mesh before actual subdivision returns the biggest
benefit. The results are the best for Real_3 with data remap-

ping before refinement, showing a 52.5X speedup on 64 pro-
cessors. Extensive performance analysis of the parallel mesh

adaption code is given in [19].

Figure 5 shows the remapping time for each of the three

cases. As in Fig. 4, results are presented both when the

data remapping is done after and before the actual mesh

subdivision. A significant reduction in remapping time is
observed when the adapted mesh is load balanced by per-

forming data movement prior to actual subdivision. This is

because the mesh grows in size only after the data has been

redistributed. The biggest improvement is seen for Real_3
when the remapping time is reduced to less than a third

from 3.71 sees to 1.03 sees on 64 processors. These results

in Figs. 4 and 5 demonstrate that our methodology is effec-

tive in significantly reducing the data remapping time and

improving the parallel performance of mesh refinement.

Table 2 compares the processor reassignment times and
the amount of data movement for the Real_2 strategy when

using the optimal and the heuristic MWBG, and the optimal

BMCM algorithms. The MWBG algorithms use the TotalV

metric, whereas the BMCM algorithm uses the HaxV met-

ric. The optimal MWBG method always requires almost an

order of magnitude more time than the heuristic method;

however, the reduction in the amount of total data move-

ment is insignificant for our test case. The optimal BMCM

method always requires more time than the optimal MWBG
method. The execution times for all three methods increase

6O

o Real_l Remap after refinement

[] Real_2 Remap before refinement_

45- tx Real_3 J j

_ 30-

0 ' '

0 8 16 24 32 40 48 56 64

Number of processors

Figure 4: Speedup of the parallel mesh adaptor when data

is remapped either after or before mesh refinement.

101

i0(

_--A. ---- Remap after refinement
"_ "-. Remap before mfmement

- ... - ---.-_......... ,

[] Real_2

tx Real3

i i i i i i i

0 8 16 24 32 40 48 56 64

Number of processors

Figure 5: Remapping times when data is remapped either
after or before mesh refinement.

with the number of processors because of the growth in the

size of the similarity matrix; however, the heuristic MWBG

time for 64 processors is still very small and acceptable. The

total volume of data movement is obviously smaller for the

MWBG algorithms because they use the TotalV cost metric.

In the optimal BMCM method, the maximum of the number

of elements sent or received is explicitly minimized; however,

the MWBG methods give identical numbers. These values
are shown in the second column of Table 2. There were some

differences in the maximum number of elements received

among the three methods; however, the maximum number

of elements sent was consistently larger and these are conse-

quently reported. This demonstrates that for our test case,

the heuristic algorithm does an excellent job of minimizing
both the TotalV and the HaxV cost metrics. Similar results

were obtained for the other two strategies.

Figure 6 shows how the execution time is spent during

the refinement and the subsequent load balancing phases
for the three different cases. The TotalV metric was used

to model the remapping cost. Our heuristic greedy MWBG

algorithm was used to perform the processor reassignment.

Max OptMWBG
(Sent, Total Reass.

P Reed) Elems Time
2 11295225220.0002
4 6827 168130.0004
8 8169 300710.0013

16 7131 350960.0045
32 4410 347380.0!77
64 2264 380590.0650

HeuMWBG OptBMCM
Total Reass.Total Reass.
Elems Time Elems Time

' i

22522 0.0000 22522 0.0003

16813 0.0001 16813 0.0006

30071 0.0002 35506 0.0019

36520 0.0005 50488 0.0070
35032 0.0017 49641 0.0323

38283 0.0088 52837 0.1327

Table 2: Comparison of the optimal MWBG, heuristic MWBG (both using the TotalV cost metric), and optimal BMCM

(using the MaxV cost metric) mappers in terms of the number of elements moved and the reassignment times (in sees) for the

Real_2 refinement strategy.

The reassignment times are not shown since they are neg-

ligible compared to the other times and are very similar to

those listed in Table 2 for all the three cases. :The reparti-

tioning curves, using parallel MeTiS [15], are almost identi-

cal for the three cases because the time to repartition mostly

depends on the initial problem size. Notice that the reparti-

tioning times are almost independent of the number of pro-

cessors; however, for our test mesh, there is a minimum

when the number of processors is about 16. This is not un-

expected. When there are too few processors, repartitioning

takes more time because each processor has a bigger share

of the total work. When there are too many processors, an

increase in the communication cost slows down the repar-
titioner. For Real_2, the MeTiS partitioner required 0.58

sees to generate 64 partitions on 64 processors. The remap-

ping times gradually decrease as the number of processors

is increased. This is because even though the total volume
of data movement increases with the number of processors,

there are actually more processors to share the work. Notice

that the refinement, repartitioning, and remapping times are

generally comparable when using more than 32 processors.

For example, the refinement and remapping phases required

0.55 sees and 0.89 sees, respectively, on 64 processors for

Real_2. The results indicate that our load balancing strat-

egy will remain viable on large numbers of processors as
none of the individual modules will be a bottleneck.

Finally, we investigate the impact of load balancing on

flow solver execution times. Suppose that P processors are

used to solve a problem on a tetrahedral mesh consisting of

N elements. In a load balanced configuration, each proces-

sor has N/P elements assigned to it. The computational

mesh is then refined to generate a total of GN elements,

1 < G < 8 for our refinement procedure. If the work-

load were balanced, each processor would have GN/P el-

ements. But in the worst case, all the elements on a sub-

set of processors are isotropicaily refined 1-to-8, while ele-

ments on the remaining processors remain unchanged. The

most heavily-loaded processor would then have the smaller

of 8N/P and GN-(P-1)N/P elements. Thus, the maximum

improvement due to load balancing for a single refinement
1 min (8, P(G-1)+I).step would be

The maximum impact of load balancing for the three

strategies are shown in Fig. 7. The mesh growth factor G

is 1.35 for the Real_l case, giving a maximum improvement

of 5.91 with load balancing when P >_ 20. The value of G

is 3.31 and 5.28 for Real_2 and Real_3, so the maximum

improvements are 2.42 (for P >_ 4) and 1.52 (for P _> 2),

respectively. There is obviously no improvement with load

balancing if G = 1 or G = 8. Notice that maximum imbal-

ance is attained faster as G increases; however, the maxi-

mum imbalance value gradually decreases.

Figure 8 illustrates the actual impact of load balancing
for the different cases. The three curves demonstrate the

Same basic nature as those in Fig. 7. The improvement due

to load balancing on 64 processors is a factor of 3:46, 2.03,

and 1.52, for Real_l, Real_2, and Real_3, respectively. The
impact of load balancing for these cases is somewhat less

significant than the maximum possible since they model ac-
tual solution-based adaptions that do not necessarily cause

worst case scenarios. Note, however, that the maximum im-

provement is already attained for Real_3. The Real_l and

Real_2 strategies would also attain their respective maxima

if more processors were used. It is important to realize that

the results shown in Figs. 7 and 8 are for a single refinement
step. With repeated refinement, the gains realized with load

balancing may be even more significant.

6 SUMMARY

We have described our framework for efficiently performing

parallel adaptive flow computations in a message-passing en-
vironment. A novel method was presented to dynamically

balance the processor workloads with a global view. This

paper presented the implementation and integration of all

major components within our load balancing strategy in-

cluding the interface between a parallel mesh adaption code

and a data remapping module. Several novel features of our

framework were described: (i) dual graph representation,

(ii) parallel mesh repartitioner, (iii) optimal and heuristic

remapping cost functions, (iv) efficient data movement and

refinement schemes, and (v) accurate metrics comparing the
computational gain and the redistribution cost.

Three different cases were studied with varying fractions

of a realistic-sized domain being targeted for refinement.

The mesh adaption was based on actual flow solutions for

a helicopter rotor blade acoustics simulation. The three

strategies subdivided an initial tetrahedral mesh of 60,968

elements into approximately 82,500, 201,800, and 321,800

elements. By using a high quality parallel partitioner to re-

balance the work, a perfectly load balanced flow solver is

guaranteed with minimum communication overhead.

We developed two generic metrics to model the remap-

ping cost on most multiprocessor systems. Optimal solu-

tions for both metrics, as well as a heuristic approach were

implemented. It was shown that our heuristic algorithm

quickly finds a solution which satisfies both metrics. Addi-

tionally, strong theoretical bounds on the heuristic time and

solution quality were presented.

10

101

i 10°

-1

10 0

Real_l

-o- Adaption

--o- Partitioning

Remapping

8 16 24 32 40 48 56

Number of processors

-q.

64

10

_ 101

•

_ 10

ld

Real_2

--o- Adaption

qk --8- Partitioning

0 8 16 24 32 40 48 56 64

Number of processors

10

,-_ 10

O

100.

Real_3

O_ -o- Adaption

-o- Partitioning

emappmg

%___o

1()1
0 8 16 48 5624 32 40

Number of processors

64

Figure 6: Anatomy of execution times for the three dif-

ferent refinement strategies. The refinement, partitioning,

and remapping times for 64 processors are (0.25,0.57,0.71),

(0.55,0.58,0.89), and (0.81,0.60,1.03) for Real_l, Real_2, and
Real_3, respectively.

8

7-

6-

5

4'

3

2"

1

Maximum Imbalance

G=1.353

G=3.310

G=5.279

0 i i i i - i t i

0 8 16 24 32 40 48 56 64

Number of processors

Figure 7: Maximum impact of load balancing on flow solver

execution times for different mesh growth factors.

8

7-

_o 6-

"_5-

_ 3-

Z2"

1-

Actual Imbalance

--o- Real_l

--o-- Real_2

+ Real_3

0 ' ' ' 4b '0 16 24 32 48 56 64

Number of processors

Figure 8: Actual impact of load balancing on flow solver
execution times.

We also observed that data movement for a refinement

step should be performed after the edge-marking phase but

before the actual subdivision. This efficient remapping strat-

egy resulted in almost a four-fold cost savings for data move-

ment on the largest test case. A load balanced refinement

phase was an additional benefit of this approach. As a re-
sult, an improvement of up to 2.6X was observed in the

refinement speedup.
Finally, large-scale scientific computations on an SP2

showed that load balancing can dramatically reduce flow

solver times over non-balanced loads. With multiple mesh

adaptions, the gains realized with load balancing may be
even more significant. Overall, the results have demon-

strated that our framework will remain viable on a large
number of processors.

7 ACKNOWLEDGEMENTS

The authors would like to thank Hal Gabow for observing

that our processor assignment problem using the MaxV met-

ric is equivalent to a bottleneck maximum cardinality match-

ing. The work of the first author was supported by NASA
under Contract Number NAS 2-96027 with the Universities

Space Research Association. The work of the second au-

thor was supported by NASA under Contract Number NAS

2-14303 with MRJ Technology Solutions.

REFERENCES

[1] R. Biswas and L. Oliker, "Load Balancing Unstructured
Adaptive Grids for CFD Problems," Proc. 8th SIAM

Conference on Parallel Processing for Scientific Com-

puting, Minneapohs, MN, 1997.

[2] R. Biswas, L. Ohker, and A. Sohn, "Global Load Balanc-
ing with Parallel Mesh Adaption on Distributed-Memory

Systems," Proc. Supercomputing'96, Pittsburgh, PA,
1996.

[3] R. Biswas and R.C. Strawn, "A New Procedure for Dy-

namic Adaption of Three-Dimensional Unstructured

Grids," Applied Numerical Mathematics 13 (1994) 437-
452.

[4] R. Biswas and R.C. Strawn, "Tetrahedral and Hexahe-

dral Mesh Adaptation for CFD Problems," Applied Nu-

merical Mathematics, to appear.

[5] N. Chrisochoides, "MultiVhreaded Model for the Dynam-

ic Load-Balancing of Parallel Adaptive PDE Computa-

tions," Applied Numerical Mathematics 20 (1996) 349-
365.

[6] H.L. de Cougny, K.D. Devine, J.E. Flaherty, R.M. Loy,

C. Ozturan, and M.S. Shephard, "Load Balancing for the

Parallel Adaptive Solution of Partial Differential Equa-

tions," Applied Numerical Mathematics 16 (1994) 157-
182.

[7] G. Cybenko, "Dynamic Load Balancing for Distributed-
Memory Multiprocessors," J. Parallel and Distributed

Computing 7 (1989) 279-301.

[8] Y. Deng, R.A. McCoy, R.B. Mart, and R.F. Peierls, "An
Unconventional Method for Load Balancing," Proc. 7th

SIAM Conference on Parallel Processing for Scientific

Computing, San Francisco, CA, 1995, pp. 605-610.

[9] P. Diniz, S. Phmpton, B. Hendrickson, R. Leland, "Par-

allel Algorithms for Dynamically Partitioning Unstruc-

tured Grids," Proc. 7th SIAM Conference on Parallel

Processing for Scientific Computing, San Francisco, CA,

1995, pp. 615-620.

[10] H.N. Gabow and R.E. Tarjan, "Algorithms for Two Bot-

tleneck Optimization Problems," J. Algorithms 9 (1988)
411-417.

[11] J. Galtier, "Automatic Partitioning Techniques for Solv-

ing Partial Differential Equations on Irregular Adaptive

Meshes," Proc. lOth A CM International Conference on

Supercomputing, Philadelphia, PA, 1996, pp. 157-164.

[12] B. Ghosh and S. Muthukrishnan, "Dynamic Load Bal-

ancing in Parallel and Distributed Networks by Ran-

dora Matchings," Proc. 6th A CM Symposium on Par-

allel Algorithms and Architectures Cape May, N J, 1994,

pp. 226-235.

[13] D. Hegarty, M. Kechadi, and K. Dawson, "Dynamic Do-

main Decomposition and Load Balancing for Parallel

Simulations of Long-Chained Molecules," PARA95

Workshop on Applied Parallel Computing in Physics,

Chemistry and Engineering Science, Lyngby, Denmark,

1995, pp. 303-312.

[14] G. Horton, "A Multilevel Diffusion Method for Dynamic

Load Balancing," Parallel Computing 19 (1993) 209-
229.

[15] G. Karypis and V. Kumar, "Parallel Multilevel K-way

Partitioning Scheme for Irregular Graphs," Report 96-

036, University of Minnesota, 1996.

[16] G. Kohring, "Dynamic Load Balancing for Parallelized
Particle Simulations on MIMD Computers," Parallel

Computing 21 (1995) 683-693.

[17] N. Mahapatra and S. Dutt, "Random Seeking: A Gen-
eral, Efficient, and Informed Randomized Scheme for Dy-

namic Load Balancing," Proc. l Oth International Paral-

lel Processing Symposium, Honolulu, HI, 1996, pp. 881-
885.

[18] T. Minyard, Y. Kallinderis, and K. Schulz, "Parallel

Load Balancing for Dynamic Execution Environments,"
Proc. 34th AIAA Aerospace Sciences Meeting, Reno, NV,

1996, Paper 96-0295.

[19] L. Ohker, R. Biswas, and R.C. Strawn, "Parallel Imple-
mentation of an Adaptive Scheme for 3D Unstructured

Grids on the SP2," Parallel Algorithms for Irregularly

Structured Problems, LNCS 1117, Springer-Verlag, 1996,
pp. 35-47.

[20] T.W. Purcell, "CFD and Transonic Hehcopter Sound,"
Proc. l_th European Rotorcraft Forum, Milan, Italy,

1988, Paper 2.

[21] A. Sohn, R. Biswas, and H. Simon, "Impact of Load Bal-
ancing on Unstructured Adaptive Grid Computations for

Distributed-Memory Multiprocessors," Proc. 8th IEEE

Symposium on Parallel and Distributed Processing, New

Orleans, LA, 1996, pp. 26-33.

[22] R.C. Strawn and T.J. Barth, "A Finite-Volume Euler

Solver for Computing Rotary-Wing Aerodynamics on

Unstructured Meshes," J. AHS 38 (1993) 61-67.

[23] R.C. Strawn, R. Biswas, and M. Garceau, "Unstructured

Adaptive Mesh Computations of Rotorcraft High-Speed

Impulsive Noise," J. Aircraft 32 (1995) 754-760.

[24] R. Van Driessche and D. Roose, "Load Balancing Com-

putational Fluid Dynamics Calculations on Unstructured

Grids," Report R-807, AGARD, 1995.

[25] A. Vidwans, Y. Kalhnderis, and V. Venkatakrishnan,
"A Parallel Dynamic Load Balancing Algorithm for 3-

D Adaptive Unstructured Grids," AIAA J. 32 (1994)
497-5O5.

[26] C. Wa]shaw and M. Berzins, "Dynamic Load-Balancing
for PDE Solvers on Adaptive Unstructured Meshes,"

Concurrency: Practice and Experience 7 (1995) 17-28.

10

